Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1.

Identifieur interne : 000E66 ( Main/Exploration ); précédent : 000E65; suivant : 000E67

Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1.

Auteurs : Jane E. Ladner [États-Unis] ; James F. Parsons ; Chris L. Rife ; Gary L. Gilliland ; Richard N. Armstrong

Source :

RBID : pubmed:14717589

Descripteurs français

English descriptors

Abstract

The class kappa glutathione (GSH) transferase is an enzyme that resides in the mitochondrial matrix. Its relationship to members of the canonical GSH transferase superfamily has remained an enigma. The three-dimensional structure of the class kappa enzyme from rat (rGSTK1-1) in complex with GSH has been solved by single isomorphous replacement with anomalous scattering at a resolution of 2.5 A. The structure reveals that the enzyme is more closely related to the protein disulfide bond isomerase, dsbA, from Escherichia coli than it is to members of the canonical superfamily. The structures of rGSTK1-1 and the canonical superfamily members indicate that the proteins folds have diverged from a common thioredoxin/glutaredoxin progenitor but did so by different mechanisms. The mitochondrial enzyme, therefore, represents a fourth protein superfamily that supports GSH transferase activity. The thioredoxin domain functions in a manner that is similar to that seen in the canonical enzymes by providing key structural elements for the recognition of GSH. The hydroxyl group of S16 is within hydrogen-bonding distance of the sulfur of bound GSH and is, in part, responsible for the ionization of the thiol in the E*GSH complex (pKa = 6.4 +/- 0.1). Preequilibrium kinetic experiments indicate that the k(on) for GSH is 1 x 10(5) M(-1) s(-1) and k(off) for GS- is approximately 8 s(-1) and relatively slow with respect to turnover with 1-chloro-2, 4-dinitrobenzene (CDNB). As a result, the KM(GSH) (11 mM) is much larger than the apparent Kd(GSH) (90 microM). The active site has a relatively open access channel that is flanked by disordered loops that may explain the relatively high turnover number (280 s(-1) at pH 7.0) toward CDNB. The disordered loops form an extensive contiguous patch on one face of the dimeric enzyme, a fact that suggests that the protein surface may interact with a membrane or other protein partner.

DOI: 10.1021/bi035832z
PubMed: 14717589


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1.</title>
<author>
<name sortKey="Ladner, Jane E" sort="Ladner, Jane E" uniqKey="Ladner J" first="Jane E" last="Ladner">Jane E. Ladner</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Center for Advanced Research in Biotechnology of the Maryland Biotechnology Institute and the National Institutes of Standards and Technology, Gudelsky Drive, Rockville, Maryland 20850, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Center for Advanced Research in Biotechnology of the Maryland Biotechnology Institute and the National Institutes of Standards and Technology, Gudelsky Drive, Rockville, Maryland 20850</wicri:regionArea>
<wicri:noRegion>Maryland 20850</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parsons, James F" sort="Parsons, James F" uniqKey="Parsons J" first="James F" last="Parsons">James F. Parsons</name>
</author>
<author>
<name sortKey="Rife, Chris L" sort="Rife, Chris L" uniqKey="Rife C" first="Chris L" last="Rife">Chris L. Rife</name>
</author>
<author>
<name sortKey="Gilliland, Gary L" sort="Gilliland, Gary L" uniqKey="Gilliland G" first="Gary L" last="Gilliland">Gary L. Gilliland</name>
</author>
<author>
<name sortKey="Armstrong, Richard N" sort="Armstrong, Richard N" uniqKey="Armstrong R" first="Richard N" last="Armstrong">Richard N. Armstrong</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:14717589</idno>
<idno type="pmid">14717589</idno>
<idno type="doi">10.1021/bi035832z</idno>
<idno type="wicri:Area/Main/Corpus">000E90</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E90</idno>
<idno type="wicri:Area/Main/Curation">000E90</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E90</idno>
<idno type="wicri:Area/Main/Exploration">000E90</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1.</title>
<author>
<name sortKey="Ladner, Jane E" sort="Ladner, Jane E" uniqKey="Ladner J" first="Jane E" last="Ladner">Jane E. Ladner</name>
<affiliation wicri:level="1">
<nlm:affiliation>The Center for Advanced Research in Biotechnology of the Maryland Biotechnology Institute and the National Institutes of Standards and Technology, Gudelsky Drive, Rockville, Maryland 20850, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Center for Advanced Research in Biotechnology of the Maryland Biotechnology Institute and the National Institutes of Standards and Technology, Gudelsky Drive, Rockville, Maryland 20850</wicri:regionArea>
<wicri:noRegion>Maryland 20850</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parsons, James F" sort="Parsons, James F" uniqKey="Parsons J" first="James F" last="Parsons">James F. Parsons</name>
</author>
<author>
<name sortKey="Rife, Chris L" sort="Rife, Chris L" uniqKey="Rife C" first="Chris L" last="Rife">Chris L. Rife</name>
</author>
<author>
<name sortKey="Gilliland, Gary L" sort="Gilliland, Gary L" uniqKey="Gilliland G" first="Gary L" last="Gilliland">Gary L. Gilliland</name>
</author>
<author>
<name sortKey="Armstrong, Richard N" sort="Armstrong, Richard N" uniqKey="Armstrong R" first="Richard N" last="Armstrong">Richard N. Armstrong</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="ISSN">0006-2960</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution (genetics)</term>
<term>Animals (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Catalysis (MeSH)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Dimerization (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Glutathione (chemistry)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Transferase (chemistry)</term>
<term>Glutathione Transferase (genetics)</term>
<term>Glutathione Transferase (metabolism)</term>
<term>Isoenzymes (chemistry)</term>
<term>Isoenzymes (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Mitochondria (enzymology)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Subunits (chemistry)</term>
<term>Protein Subunits (metabolism)</term>
<term>Rats (MeSH)</term>
<term>Serine (genetics)</term>
<term>Structure-Activity Relationship (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Catalyse (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Dimérisation (MeSH)</term>
<term>Glutathion (composition chimique)</term>
<term>Glutathion (métabolisme)</term>
<term>Glutathione transferase (composition chimique)</term>
<term>Glutathione transferase (génétique)</term>
<term>Glutathione transferase (métabolisme)</term>
<term>Isoenzymes (composition chimique)</term>
<term>Isoenzymes (métabolisme)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Mitochondries (enzymologie)</term>
<term>Rats (MeSH)</term>
<term>Relation structure-activité (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
<term>Sous-unités de protéines (composition chimique)</term>
<term>Sous-unités de protéines (métabolisme)</term>
<term>Substitution d'acide aminé (génétique)</term>
<term>Sérine (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutathione</term>
<term>Glutathione Transferase</term>
<term>Isoenzymes</term>
<term>Protein Subunits</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutathion</term>
<term>Glutathione transferase</term>
<term>Isoenzymes</term>
<term>Sous-unités de protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Glutathione Transferase</term>
<term>Serine</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutathione transferase</term>
<term>Substitution d'acide aminé</term>
<term>Sérine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Glutathione Transferase</term>
<term>Isoenzymes</term>
<term>Protein Subunits</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutathion</term>
<term>Glutathione transferase</term>
<term>Isoenzymes</term>
<term>Sous-unités de protéines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Binding Sites</term>
<term>Catalysis</term>
<term>Crystallography, X-Ray</term>
<term>Dimerization</term>
<term>Evolution, Molecular</term>
<term>Kinetics</term>
<term>Protein Binding</term>
<term>Rats</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Catalyse</term>
<term>Cinétique</term>
<term>Cristallographie aux rayons X</term>
<term>Dimérisation</term>
<term>Liaison aux protéines</term>
<term>Rats</term>
<term>Relation structure-activité</term>
<term>Sites de fixation</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The class kappa glutathione (GSH) transferase is an enzyme that resides in the mitochondrial matrix. Its relationship to members of the canonical GSH transferase superfamily has remained an enigma. The three-dimensional structure of the class kappa enzyme from rat (rGSTK1-1) in complex with GSH has been solved by single isomorphous replacement with anomalous scattering at a resolution of 2.5 A. The structure reveals that the enzyme is more closely related to the protein disulfide bond isomerase, dsbA, from Escherichia coli than it is to members of the canonical superfamily. The structures of rGSTK1-1 and the canonical superfamily members indicate that the proteins folds have diverged from a common thioredoxin/glutaredoxin progenitor but did so by different mechanisms. The mitochondrial enzyme, therefore, represents a fourth protein superfamily that supports GSH transferase activity. The thioredoxin domain functions in a manner that is similar to that seen in the canonical enzymes by providing key structural elements for the recognition of GSH. The hydroxyl group of S16 is within hydrogen-bonding distance of the sulfur of bound GSH and is, in part, responsible for the ionization of the thiol in the E*GSH complex (pKa = 6.4 +/- 0.1). Preequilibrium kinetic experiments indicate that the k(on) for GSH is 1 x 10(5) M(-1) s(-1) and k(off) for GS- is approximately 8 s(-1) and relatively slow with respect to turnover with 1-chloro-2, 4-dinitrobenzene (CDNB). As a result, the KM(GSH) (11 mM) is much larger than the apparent Kd(GSH) (90 microM). The active site has a relatively open access channel that is flanked by disordered loops that may explain the relatively high turnover number (280 s(-1) at pH 7.0) toward CDNB. The disordered loops form an extensive contiguous patch on one face of the dimeric enzyme, a fact that suggests that the protein surface may interact with a membrane or other protein partner.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14717589</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>05</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0006-2960</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>43</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2004</Year>
<Month>Jan</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1.</ArticleTitle>
<Pagination>
<MedlinePgn>352-61</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The class kappa glutathione (GSH) transferase is an enzyme that resides in the mitochondrial matrix. Its relationship to members of the canonical GSH transferase superfamily has remained an enigma. The three-dimensional structure of the class kappa enzyme from rat (rGSTK1-1) in complex with GSH has been solved by single isomorphous replacement with anomalous scattering at a resolution of 2.5 A. The structure reveals that the enzyme is more closely related to the protein disulfide bond isomerase, dsbA, from Escherichia coli than it is to members of the canonical superfamily. The structures of rGSTK1-1 and the canonical superfamily members indicate that the proteins folds have diverged from a common thioredoxin/glutaredoxin progenitor but did so by different mechanisms. The mitochondrial enzyme, therefore, represents a fourth protein superfamily that supports GSH transferase activity. The thioredoxin domain functions in a manner that is similar to that seen in the canonical enzymes by providing key structural elements for the recognition of GSH. The hydroxyl group of S16 is within hydrogen-bonding distance of the sulfur of bound GSH and is, in part, responsible for the ionization of the thiol in the E*GSH complex (pKa = 6.4 +/- 0.1). Preequilibrium kinetic experiments indicate that the k(on) for GSH is 1 x 10(5) M(-1) s(-1) and k(off) for GS- is approximately 8 s(-1) and relatively slow with respect to turnover with 1-chloro-2, 4-dinitrobenzene (CDNB). As a result, the KM(GSH) (11 mM) is much larger than the apparent Kd(GSH) (90 microM). The active site has a relatively open access channel that is flanked by disordered loops that may explain the relatively high turnover number (280 s(-1) at pH 7.0) toward CDNB. The disordered loops form an extensive contiguous patch on one face of the dimeric enzyme, a fact that suggests that the protein surface may interact with a membrane or other protein partner.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ladner</LastName>
<ForeName>Jane E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>The Center for Advanced Research in Biotechnology of the Maryland Biotechnology Institute and the National Institutes of Standards and Technology, Gudelsky Drive, Rockville, Maryland 20850, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parsons</LastName>
<ForeName>James F</ForeName>
<Initials>JF</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rife</LastName>
<ForeName>Chris L</ForeName>
<Initials>CL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gilliland</LastName>
<ForeName>Gary L</ForeName>
<Initials>GL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Armstrong</LastName>
<ForeName>Richard N</ForeName>
<Initials>RN</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>1R4W</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 ES00267</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM30910</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>RR07707</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 ES07028</GrantID>
<Acronym>ES</Acronym>
<Agency>NIEHS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM08320</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021122">Protein Subunits</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>452VLY9402</RegistryNumber>
<NameOfSubstance UI="D012694">Serine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="C485417">glutathione S-transferase 1-1, kappa, rat</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021122" MajorTopicYN="N">Protein Subunits</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012694" MajorTopicYN="N">Serine</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14717589</ArticleId>
<ArticleId IdType="doi">10.1021/bi035832z</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Armstrong, Richard N" sort="Armstrong, Richard N" uniqKey="Armstrong R" first="Richard N" last="Armstrong">Richard N. Armstrong</name>
<name sortKey="Gilliland, Gary L" sort="Gilliland, Gary L" uniqKey="Gilliland G" first="Gary L" last="Gilliland">Gary L. Gilliland</name>
<name sortKey="Parsons, James F" sort="Parsons, James F" uniqKey="Parsons J" first="James F" last="Parsons">James F. Parsons</name>
<name sortKey="Rife, Chris L" sort="Rife, Chris L" uniqKey="Rife C" first="Chris L" last="Rife">Chris L. Rife</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Ladner, Jane E" sort="Ladner, Jane E" uniqKey="Ladner J" first="Jane E" last="Ladner">Jane E. Ladner</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E66 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E66 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:14717589
   |texte=   Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:14717589" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020